

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

The Stream Model

- Input elements enter at a rapid rate,
 at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

Side note: SGD is a Streaming Alg.

- Stochastic Gradient Descent (SGD) is an example of a stream algorithm
- In Machine Learning we call this: Online Learning
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data
- Idea: Do slow updates to the model
 - **SGD** (SVM, Perceptron) makes small updates
 - So: First train the classifier on training data.
 - Then: For every example from the stream, we slightly update the model (using small learning rate)

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

General Stream Processing Model Ad-Hoc **Queries** Standing . . . 1, 5, 2, 7, 0, 9, 3 Queries ... a, r, v, t, y, h, b Output **Processor** . . . 0, 0, 1, 0, 1, 1, 0 -time Streams Entering. Each is stream is composed of elements/tuples Limited Working **Archival Storage Storage**

Problems on Data Streams

- Types of queries one wants on answer on a data stream: (we'll do these today)
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Problems on Data Streams

- Types of queries one wants on answer on a data stream: (we'll do these next time)
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements

Applications (1)

- Mining query streams
 - Google wants to know what queries are more frequent today than yesterday
- Mining click streams
 - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
 - E.g., look for trending topics on Twitter, Facebook

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Applications (2)

- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

Sampling from a Data Stream: Sampling a fixed proportion

As the stream grows the sample also gets bigger

Sampling from a Data Stream

- Since we can not store the entire stream,
 one obvious approach is to store a sample
- Two different problems:
 - (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - At any "time" k we would like a random sample of s elements
 - What is the property of the sample we want to maintain? For all time steps k, each of k elements seen so far has equal prob. of being sampled

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Sampling a Fixed Proportion

- Problem 1: Sampling fixed proportion
- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - Answer questions such as: How often did a user run the same query in a single days
 - Have space to store 1/10th of query stream
- Naïve solution:
 - Generate a random integer in [0..9] for each query
 - Store the query if the integer is 0, otherwise discard

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Problem with Naïve Approach

- Simple question: What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
 - Proposed solution: We keep 10% of the queries
 - Sample will contain x/10 of the singleton queries and 2d/10 of the duplicate queries at least once
 - But only d/100 pairs of duplicates
 - d/100 = 1/10 · 1/10 · d
 - Of d "duplicates" 18d/100 appear exactly once
 - 18d/100 = ((1/10 · 9/10)+(9/10 · 1/10)) · d
 - So the sample-based answer is $\frac{\frac{d}{100}}{\frac{x}{10} + \frac{d}{100} + \frac{18d}{100}} = \frac{d}{10x + 19d}$

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

.

Solution: Sample Users

Solution:

- Pick 1/10th of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Generalized Solution

Stream of tuples with keys:

How to generate a 30% sample?

- Key is some subset of each tuple's components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application
- To get a sample of a/b fraction of the stream:
 - Hash each tuple's key uniformly into b buckets
 - Pick the tuple if its hash value is at most a

Hash table with **b** buckets, pick the tuple if its hash value is at most **a**.

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Sampling from a Data Stream: Sampling a fixed-size sample

As the stream grows, the sample is of fixed size

Maintaining a fixed-size sample

- Problem 2: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2Stream: $|a \times c y z|k qd e g...$

At n= 5, each of the first 5 tuples is included in the sample **S** with equal prob. At n= 7, each of the first 7 tuples is included in the sample **S** with equal prob.

Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen n-1 elements, and now the nth element arrives (n > s)
 - With probability **s/n**, keep the **n**th element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property:
 - After n elements, the sample contains each element seen so far with probability s/n

Proof: By Induction

- We prove this by induction:
 - Assume that after n elements, the sample contains each element seen so far with probability s/n
 - We need to show that after seeing element n+1
 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)
- Base case:
 - After we see n=s elements the sample S has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

_

Proof: By Induction

- Inductive hypothesis: After n elements, the sample
 S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right) \left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$
Figure 1 at 1 ... Figure 1 at 1... Figure 1 at 1... Figure 2 at 1... Figure 2 at 1... Figure 2 at 1... Figure 3 a

- So, at time **n**, tuples in **S** were there with prob. **s/n**
- Time $n \rightarrow n+1$, tuple stayed in **S** with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

21

Queries over a (long) Sliding Window

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N – the N most recent elements received
- Interesting case: N is so large that the data cannot be stored in memory, or even on disk
 - Or, there are so many streams that windows for all cannot be stored
- Amazon example:
 - For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
 - We want answer queries, how many times have we sold X in the last k sales

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

23

N = 6

Sliding Window: 1 Stream

Sliding window on a single stream:

qwertyuiopasdfghjklzxcvbnm
qwertyuiopasdfghjklzxcvbnm
qwertyuiopasdfghjklzxcvbnm
qwertyuiopasdfghjklzxcvbnm

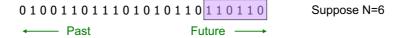
Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Counting Bits (1)

- Problem:
 - Given a stream of 0s and 1s
 - Be prepared to answer queries of the form How many 1s are in the last k bits? where k ≤ N
- Obvious solution:

Store the most recent N bits

■ When new bit comes in, discard the **N+1**st bit



Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Counting Bits (2)

- You can not get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store N bits?

- E.g., we're processing 1 billion streams and
 N = 1 billion
 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0
- But we are happy with an approximate answer

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

An attempt: Simple solution

- Q: How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: Uniformity assumption

- Maintain 2 counters:
 - S: number of 1s from the beginning of the stream
 - **Z**: number of 0s from the beginning of the stream
- How many 1s are in the last N bits? $N \cdot \frac{S}{S+Z}$
- But, what if stream is non-uniform?
 - What if distribution changes over time?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

27

DGIM Method

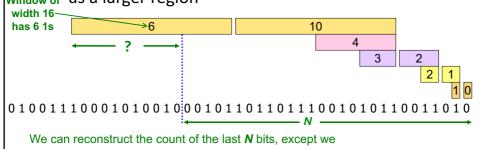
[Datar, Gionis, Indyk, Motwani]

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(\log^2 N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

- Solution that doesn't (quite) work:
 - Summarize exponentially increasing regions of the stream, looking backward
 - Drop small regions if they begin at the same point

window of as a larger region



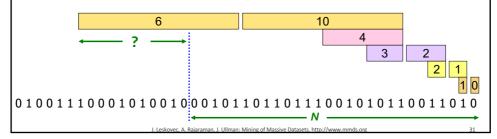
are not sure how many of the last $\bf 6 \ 1s$ are included in the $\it N$

What's Good?

- Stores only O(log²N) bits
 - $O(\log N)$ counts of $\log_2 N$ bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1s in the "unknown" area

What's Not So Good?

- As long as the 1s are fairly evenly distributed,
 the error due to the unknown region is small
 no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!



Fixup: DGIM method

[Datar, Gionis, Indyk, Motwani]

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block sizes (number of 1s) increase exponentially
- When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in O(log₂N) bits

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - (A) The timestamp of its end [O(log N) bits]
 - (B) The number of 1s between its beginning and end [O(log log N) bits]
- Constraint on buckets:Number of 1s must be a power of 2
 - That explains the O(log log N) in (B) above

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets.
- Buckets disappear when their end-time is > N time units in the past

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Example: Bucketized Stream At least 1 of 2 of 2 of 1 of 2 of size 2 size 1 size 16. Partially size 8 size 4 beyond window. Three properties of buckets that are maintained: - Either one or two buckets with the same power-of-2 number of 1s - Buckets do not overlap in timestamps - Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0: no other changes are needed

Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Updating Buckets (2)

- If the current bit is 1:
 - (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
 - (2) If there are now three buckets of size 1,
 combine the oldest two into a bucket of size 2
 - (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
 - (4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

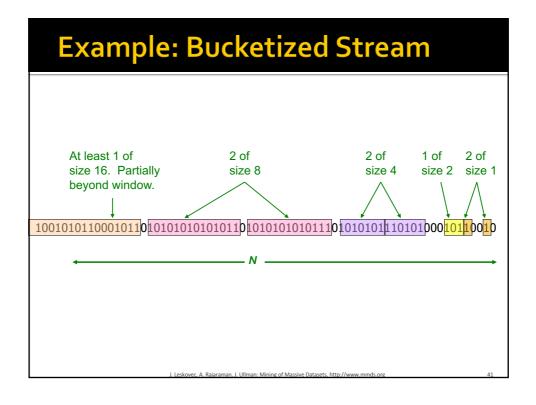
Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query?

- To estimate the number of 1s in the most recent N bits:
 - 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
 - 2. Add half the size of the last bucket
- Remember: We do not know how many 1s of the last bucket are still within the wanted window



Error Bound: Proof

- Why is error 50%? Let's prove it!
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r, the true sum is at least 1+2+4+..+2^{r-1} = 2^r-1

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size
 bucket, we allow either r-1 or r buckets (r > 2)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- Error is at most O(1/r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Extensions

- Can we use the same trick to answer queries How many 1's in the last k? where k < N?</p>
 - A: Find earliest bucket B that at overlaps with k.
 Number of 1s is the sum of sizes of more recent buckets + ½ size of B

1001010110001011 01010101010111 0101010101111 010101011110101 000 1011 001 0

Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?

Extensions

- Stream of positive integers
- We want the sum of the last k elements
 - Amazon: Avg. price of last k sales
- Solution:
 - (1) If you know all have at most m bits
 - Treat m bits of each integer as a separate stream
 - Use DGIM to count **1s** in each integer c_i ...estimated count for **i-th** bit
 - The sum is $=\sum_{i=0}^{m-1} c_i 2^i$
 - (2) Use buckets to keep partial sums
 - Sum of elements in size b bucket is at most 2^b

Idea: Sum in each bucket is at most 2^b (unless bucket has only 1 integer) Bucket sizes:

16 8 4 <mark>2</mark> 1

45

Summary

- Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows
- Sampling a fixed-size sample
 - Reservoir sampling
- Counting the number of 1s in the last N elements
 - Exponentially increasing windows
 - Extensions:
 - Number of 1s in any last k (k < N) elements</p>
 - Sums of integers in the last N elements